viernes, 8 de julio de 2016

Cronograma de los avances de la robotica


SigloXVIII.
A mediados del J. de Vaucanson construyó varias muñecas mecánicas de tamaño humano que ejecutaban piezas de música
1801
J. Jaquard invento su telar, que era una máquina programable para la urdimbre
1805
H. Maillardet construyó una muñeca mecánica capaz de hacer dibujos.
1946
El inventor americano G.C Devol desarrolló un dispositivo controlador que
podía registrar señales eléctricas por medios magnéticos y reproducirlas para
accionar un máquina mecánica. La patente estadounidense se emitió en 1952.
1951
Trabajo de desarrollo con teleoperadores (manipuladores de control remoto)
para manejar materiales radiactivos. Patente de Estados Unidos emitidas para Goertz (1954) y Bergsland (1958).
1952
Una máquina prototipo de control numérico fue objetivo de demostración en el Instituto Tecnológico de Massachusetts después de varios años de desarrollo.
Un lenguaje de programación de piezas denominado APT (Automatically
Programmed Tooling) se desarrolló posteriormente y se publicó en 1961.
1954
El inventor británico C. W. Kenward solicitó su patente para diseño de robot.
Patente británica emitida en 1957.
1954
G.C. Devol desarrolla diseños para Transferencia de artículos programada.
Patente emitida en Estados Unidos para el diseño en 1961.
1959
Se introdujo el primer robot comercial por Planet Corporation. estaba controlado por interruptores de fin de carrera.
1960
Se introdujo el primer robot ‘Unimate’’, basada en la transferencia de artic.
programada de Devol. Utilizan los principios de control numérico para el
control de manipulador y era un robot de transmisión hidráulica.
1961
Un robot Unimate se instaló en la Ford Motors Company para atender una
máquina de fundición de troquel.
1966
Trallfa, una firma noruega, construyó e instaló un robot de pintura por pulverización.
FECHA
DESARROLLO
1968
Un robot móvil llamado ‘Shakey’’ se desarrollo en SRI (standford Research
Institute), estaba provisto de una diversidad de sensores así como una cámara de visión y sensores táctiles y podía desplazarse por el suelo.
1971
El ‘Standford Arm’’, un pequeño brazo de robot de accionamiento eléctrico, se desarrolló en la Standford University.
1973
Se desarrolló en SRI el primer lenguaje de programación de robots del tipo de computadora para la investigación con la denominación WAVE. Fue
seguido por el lenguaje AL en 1974. Los dos lenguajes se desarrollaron
posteriormente en el lenguaje VAL comercial para Unimation por Víctor Scheinman y Bruce Simano.
1974
ASEA introdujo el robot Irb6 de accionamiento completamente eléctrico.
1974
Kawasaki, bajo licencia de Unimation, instaló un robot para soldadura por arco para estructuras de motocicletas.
1974
Cincinnati Milacron introdujo el robot T3 con control por computadora.
1975
El robot ‘Sigma’’ de Olivetti se utilizó en operaciones de montaje, una de las
primitivas aplicaciones de la robótica al montaje.
1976
Un dispositivo de Remopte Center Compliance (RCC) para la inserción de
piezas en la línea de montaje se desarrolló en los laboratorios Charles Stark
Draper Labs en estados Unidos.
1978
El robot T3 de Cincinnati Milacron se adaptó y programó para realizar operaciones de taladro y circulación de materiales en componentes de aviones, bajo el patrocinio de Air Force ICAM (Integrated Computer- Aided Manufacturing).
1978
Se introdujo el robot PUMA (Programmable Universal Machine for Assambly) para tareas de montaje por Unimation, basándose en diseños obtenidos en un estudio de la General Motors.
1979
Desarrollo del robot tipo SCARA (Selective Compliance Arm for Robotic
Assambly) en la Universidad de Yamanashi en Japón para montaje. Varios robots SCARA comerciales se introdujeron hacia 1981.
1980
Un sistema robótico de captación de recipientes fue objeto de demostración en la Universidad de Rhode Island. Con el empleo de visión de máquina
el sistema era capaz de captar piezas en orientaciones aleatorias y posiciones
fuera de un recipiente.
FECHA
DESARROLLO
1981
Se desarrolló en la Universidad de Carnegie- Mellon un robot de impulsión
directa. Utilizaba motores eléctricos situados en las articulaciones del manipula dor sin las transmisiones mecánicas habituales empleadas en la mayoría de los robots.
1982
IBM introdujo el robot RS-1 para montaje, basado en varios años de desarro
llo interno. Se trata de un robot de estructura de caja que utiliza un brazo
constituido por tres dispositivos de deslizamiento ortogonales. El lenguaje del robot AML, desarrollado por IBM, se introdujo también para programar
el robot SR-1.
1983
Informe emitido por la investigación en Westinghouse Corp. bajo el patrocinio de National Science Foundation sobre un sistema de montaje
programable adaptable (APAS), un proyecto piloto para una línea de montaje automatizada flexible con el empleo de robots.
1984
Robots 8. La operación típica de estos sistemas permitía que se desarrollaran
programas de robots utilizando gráficos interactivos en una computadora
personal y luego se cargaban en el robot.


Clasificación de los robots
La potencia del software en el controlador determina la utilidad y flexibilidad del robot dentro de las limitantes del diseño mecánico y la capacidad de los sensores. Los robots han sido clasificados de acuerdo a su generación, a su nivel de inteligencia, a su nivel de control, y a su nivel de lenguaje de programación. Éstas clasificaciones reflejan la potencia del software en el controlador, en particular, la sofisticada interacción de los sensores. La generación de un robot se determina por el orden histórico de desarrollos en la robótica. Cinco generaciones son normalmente asignadas a los robots industriales. La tercera generación es utilizada en la industria, la cuarta se desarrolla en los laboratorios de investigación, y la quinta generación es un gran sueño.

1.- Robots Play-back, los cuales regeneran una secuencia de instrucciones grabadas, como un robot utilizado en recubrimiento por spray o soldadura por arco. Estos robots comúnmente tienen un control de lazo abierto.


2.- Robots controlados por sensores, estos tienen un control en lazo cerrado de movimientos manipulados, y hacen decisiones basados en datos obtenidos por sensores.




3.- Robots controlados por visión, donde los robots pueden manipular un objeto al utilizar información desde un sistema de visión.




4.- Robots controlados adaptablemente, donde los robots pueden automáticamente reprogramar sus acciones sobre la base de los datos obtenidos por los sensores.



5.- Robots con inteligencia artificial, donde las robots utilizan las técnicas de inteligencia artificial para hacer sus propias decisiones y resolver problemas.









No hay comentarios.:

Publicar un comentario